
ВИНТОВЫЕ НАСОСЫ ОБЪЕМНОГО ДЕЙСТВИЯ

ОБЩИЕ ХАРАКТЕРИСТИКИ И ОБЛАСТИ ПРИМЕНЕНИЯ

ТЕМПЕРАТУРА

Максимально допустимая рабочая температура жидкости зависит от типа статора насоса.

Кроме того, данный параметр может определяться природой жидкости и условиями работы насоса.

ПАРАМЕТРЫ ЗАБОРА ЖИДКОСТИ

Винтовой насос является самовсасывающим даже при малых объемах подачи, причем при работе с такими жидкостями, как вода при температуре 20 °C, с удельным весом 1 и вязкостью 1°, создаваемый им напор составляет 7 м водного столба.

ХАРАКТЕРИСТИКИ ПОДАЧИ

Насос работает по объемному принципу, а именно, по объемному принципу с прямым вытеснением, что обеспечивает подачу постоянного, ровного и не подверженного резким колебаниям потока жидкости.

ДОПУСТИМЫЕ ДЛЯ РАБОТЫ ЖИДКОСТИ

Насосы данного типа, отличающиеся повышенной химической и механической устойчивостью эластомерного материала статора, пригодны для перекачки практически любых видов жидкости, обладающих неньютоновской (аномальной) вязкостью, не превышающей 150 000 – 200 000 мПа·с, а насосы серии МС – для перекачки жидкости с вязкостью в пределах 800 000 мПа·с. Наконец, с помощью наших насосов данного типа можно перекачивать жидкости со взвешенными твердыми частицами (за исключением абразивных) без ущерба для их производительности.

ПУСКОНАЛАДКА И РЕГУЛИРОВКА

Для защиты статора насоса залейте в насос жидкость, которую предполагается перекачивать, и убедитесь, что запорные клапаны входного и выходного патрубков насоса полностью открыты.

Для регулировки скорости потока жидкости установите нужную скорость подачи непосредственно на насосе, если он оснащен двигателем постоянного действия с регулируемой частотой вращения, либо установите регулировочный байпасный клапан между его входом и выхолом

МЕРЫ ПРЕДОСТОРОЖНОСТИ

- 1) Запрещается включать насос без жидкости. Это может привести к повреждению эластомерного материала статора.
- 2) Запрещается регулировать величину подачи насоса, закрывая подающий клапан, поскольку, с учетом объемного принципа действия насоса, в этом случае увеличится нагрузка на роторный вал, что может привести к повреждению приводного механизма и двигателя, если они не оснащены реле защиты от перегрузки.

ДАННЫЕ, НЕОБХОДИМЫЕ ДЛЯ ПРАВИЛЬНОГО ВЫБОРА НАСОСА

- 1) Тип установки и вариант использования насоса в системе, в которой его предполагается установить.
- 2) Скорость потока (необходимая подача) в л/мин или $M^3/4$.
- 3) Общее давление напора подачи (бар).
- 4) Данные по высоте столба жидкости под всасывающим патрубком насоса (NPSH), либо условия на входе (давление или разрежение вакуума, напор, параметры труб, клапанов и т.п.).
- 5) Химическая и физическая природа жидкости, которую необходимо перекачивать: химический состав, рН, вязкость, плотность и температура.
- Наличие взвешенных твердых частиц (максимальный ожидаемый размер) и степень абразивности.
- Напряжение питания и частота в сети для подключения двигателя.
- Тип передаточного механизма двигатель-насос (напрямую с использованием редукторного двигателя, с использованием двигателя с регулируемой частотой вращения – насос с простым валом).

ПИЩЕВАЯ ПРОМЫШЛЕННОСТЬ

- Концентраты
- Мармелады и джемы
- Кремы
- Сметана
- Растительные экстракты
- Мясные экстракты
- Соки
- Плавленый сыр
- Мед, яйца, глазурь, жир
- Кондитерское тесто
- Рыбный паштет
- Молоко и побочные продукты
- Гомогенизированные продукты
- Соусы
- Растительные жиры
- Масла и соусы
- Патока
- Желатиновые растворы
- Шоколад, сладкие фруктовые маринады, пектин
- Горчица
- Пастеризующие добавки
- Подача добавок под давлением

производство напитков

- Сусла и концентраты
- Вина и спирты
- Пиво и солод
- Подача составов на фильтрацию
- Эссенции и ароматизаторы
- Минеральная вода
- Сиропы и дрожжи
- Подача составов в разливочную машину
- Известковое молоко

КОСМЕТИЧЕСКАЯ И ПАРФЮМЕРНАЯ ПРОМЫШЛЕННОСТЬ

- Кремы
- Зубная паста
- Мыла, шампуни, моющие средства
- Пенообразующие средства для ванн
- Витаминные растворы
- Эмульсии и дисперсии
- Пасты для мытья рук

ХИМИЧЕСКАЯ, ПОЛИГРАФИЧЕСКАЯ, ПЕРЕГОННАЯ И ТЕКСТИЛЬНАЯ ПРОМЫШЛЕННОСТИ

- Эссенции, смолы, клеи
- Пасты ПВХ, парафины, пасты, квасцы
- Антикриптографические растворы
- Лаки и краски
- Полиграфические чернила
- Удобрения
- Кислоты
- Щелоки
- Декстрины
- Бумажные клеи
- Крахмалосодержащие растворы
- Целлюлоза
- Бензин и нефтепродукты
- Отстойные концентраты
- Известковое молоко
- Вода с анилиновыми соединениями

ПРОИЗВОДСТВО КЕРАМИЧЕСКИХ ПЛИТОК, СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ И АНАЛОГИЧНЫЕ ПРОИЗВОДСТВА

- Цементное тесто
- Литейная паста
- Глиняная продукция
- Шламы
- Солоды
- Цементные водные растворы (цементное молоко)
- Осадок стеклодувного производства
- Сточные воды
- Смеси, асбест, цемент

УСТАНОВКИ ПО ОЧИСТКЕ И КОНДИЦИОНИРОВАНИЮ ВОДЫ

- Сточные воды
- Шламы
- Морская известь
- Вода из сточных колодцев
- Щелоки
- Стоки со взвесями после обработки воды или шламов
- Стоки скотобоен
- Стоки рыбоперерабатывающих производств
- Органические стоки
- Стоки кожевенных производств

Винтовой насос представляет собой самовсасывающий насос объемного типа действия с одним вращающимся валом. Основными рабочими элементами насоса являются стальной ротор и резиновый статор. Ротор представляет собой однозаходный винт круглого сечения с большим шагом резьбы. Резиновый статор изготавливается методом вулканизационного нанесения резины на внутреннюю часть стальной трубы. Полый сердечник статора представляет собой двухзаходный винт круглого сечения, аналогичного сечению ротора, но с шагом резьбы, равным удвоенному шагу резьбы ротора. Ротор вращается внутри статора, в результате чего каждая точка его поверхности осуществляет движение по гипоциклоидной траектории, а полости между поверхностями ротора и статора перемещаются по спиральной траектории и, забирая жидкость из входного патрубка, подают ее на выпускное отверстие.

ХАРАКТЕРИСТИКИ И ВАРИАНТЫ ПРИМЕНЕНИЯ

MAN

MIN

MCN

Код CED: ZMC

Код CED: ZMI

Код CED: ZMA

Соединения по стандарту DIN 11851. Камера выполнена из полированной нержавеющей стали. Резервуары, легко доступные для осмотра (за исключением насоса типа ZMAN 40). Полностью отсутствуют области застаивания перекачиваемого материала.

Трубная арматура с фланцами по стандарту

UNI 2223 PN16. Вращающиеся детали выпол-

нены из нержавеющей стали. Камеры впуска

и подачи выполнены из нержавеющей стали

или чугуна. Цельная конструкция, обеспечи-

вающая работу на повышенных нагрузках.

Простота осмотра внутренних емкостей бла-

годаря телескопической конструкции. Полно-

стью отсутствуют области застаивания пере-

Трубная арматура по стандартам DIN 11851

или UNI 2223 PN16. Вращающиеся детали и

камеры впуска и подачи выполнены из не-

ржавеющей стали. Простота осмотра внут-

ренних емкостей благодаря телескопической

конструкции. Полностью отсутствуют области

застаивания перекачиваемого материала.

Забор материала из бункера с винтом пред-

качиваемого материала.

варительной подачи.

- Молоко
- Сметана
- Соки
- Сиропы
- Фруктовые кремы
- Масла
- Пиво
- Вино
- Концентраты
- Соусы
- Паштеты
- Пищевые кремы
- Косметические кремы
- Химикаты
- Красители и кожевенные составы
- Экстракты
- Шламы
- Сточные воды
- Переработанные воды
- Чернила
- Отстой
- Дистилляты
- «Борланд»
- Моющие средства
- Шампуни и жидкие мыла
- Густые пасты
 - Сгущенный шлам
 - Густые органические стоки
- Смеси пищевых продуктов
- Виноград без черенков
- Фруктовые салаты
- Фруктовые маринады
- Томатная паста
- Фруктовые пюре
- Густые концентраты
- Плавленый сыр
- Осадки

MCRN

Код CED: ZMR

Трубная арматура по стандартам DIN 11851 или UNI 2223 PN16. Вращающиеся детали и камеры впуска и подачи выполнены из нержавеющей стали. Забор материала из бункера с винтом предварительной подачи и лопастным измельчителем для насыпных материалов, приводимым в движение независимым редукторным двигателем. Простота осмотра внутренних емкостей благодаря телескопической конструкции. Полностью отсутствуют области застаивания перекачиваемого материала.

- Цельный виноград
- Измельченный виноград с черенками
- Осадки от измельченного винограда
- Цельные помидоры
- Цельные вареные фрукты
- Отходы производства томатной пасты
- Фруктовая кожура, очистки и семена
- Ягоды
- Фрукты
- Стоки от выжимки

MC2RN

Код CED: ZMR2

M₂CN

Код CED: ZM2CN

Трубная арматура по стандартам DIN 11851 или UNI 2223 PN16. Вращающиеся детали и камеры впуска и подачи выполнены из нержавеющей стали. Простота осмотра внутренних емкостей благодаря телескопической конструкции.

Забор материала из бункера с винтом предварительной подачи и двумя лопастными измельчителями для насыпных материалов (MC2RN). Забор материала из бункера с лопастным измельчителем для насыпных материалов, приводимым в движение независимым редукторным двигателем и сдвоенным синхронизированным винтом предварительной подачи (M2CN).

Измельчитель для насыпных материалов приводится в движение независимым редукторным двигателем. Полностью отсутствуют области застаивания перекачиваемого материала.

Материалы с повышенной вязкостью, для которых при подаче на винт насоса необходимо прикладывать внешнее давление:

- Сыр «Рокфор»
- «Mascarpone»
- Ricotta
- Мягкий сыр
- Животное или растительное масло
- Тесто
- Измельченная начинка для пирогов

РОЗЛИВ В БУТЫЛКИ / ЗАМОРОЗКА / СУСЛА И ВИНА

Подача вина и

жидкостей

шителей

- Заморозка

траты

Фильтрация

Заполнение экс-

тракторов и осу-

- Сусла и концен-

ХАРАКТЕРИСТИКИ

Винтовые насосы объемного действия, применяемые в винодельческой промышленности, имеют замечательное преимущество - самовсасывание - и, кроме того, не требуют установки впускных и выпускных клапанов. С их помощью можно легко изменить направление перекачки вина, просто изменив

направление вращения ротора. Перекачка продукции осуществляется бережно, в непрерывном и равномерном режиме, что чрезвычайно важно для обеспечения правильной фильтрации продукции или заморозки. Насосы могут приводиться в движение редукторными двигателями, либо двигателями с регулируемой частотой вращения, обеспечивающими возможность изменения величины подачи.

При правильной эксплуатации эти насосы могут долгие годы работать без серьезного технического обслуживания, не считая возможной необходимости замены резинового статора - в тех случаях, когда его износ приводит к ухудшению гидравлических характеристик насоса. Насосы изготавливаются из устойчивой к различным видам воздействий нержавеющей стали и эластомерного материала (статор) для перекачки пищевых продуктов (Perbunan), что обеспечивает их высокую надежность в работе, и могут иметь разнообразные варианты исполнения для выполнения разнообразных производственных задач.

ватель и

- Преобразоцифровой регулятор давления
- Термодатчик и цифровой регулятор температуры

Система подачи жидкостей новой конструкции состоит из винтового насоса с высокоскоростным редукторным двигателем, панели управления, трансформатора частоты, микропроцессора и детектора трансформированного сигнала, обеспечивающего поддержание частоты оборотов ротора насоса в соответствии с конкретными требованиями. Разнообразие предусмотренных в конструкции инструментов говорит о широком спектре возможных вариантов применения этих насосов:

-ИЗОБАРНЫЕ НАПОЛНИТЕЛЬНЫЕ МАШИНЫ

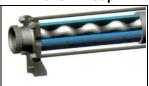
-НАПОЛНИТЕЛЬНЫЕ МАШИНЫ ГРА-ВИТАЦИОННОГО ДЕЙСТВИЯ -ХОЛОДИЛЬНИКИ

Продукция подается бережно, без резких движений и остановок, но с предварительно запрограммированными ускорениями и замедлениями, которые позволяют избегать эффектов гидравлического удара и резких перепадов давления. Микропроцессорное управление позволяет принимать и преобразовывать сигнал, посылаемый датчиками, в соответствии с заданными оператором параметрами.

Трансформатор частоты регулирует скорость подачи насоса в соответствии с величиной модулированного сигнала, выдаваемого микропроцессором.

БАРИЧЕСКИЙ РАЗГРУЗОЧНЫЙ ВИНТОВОЙ НАСОС

Это – удобный и надежный разгрузочный барический насос, оснащенный электрической панелью управления, датчиком уровня, затвором из нержавеющей стали по стандарту DM 40, контрольной кнопкой начала разгрузки на затворе и системой автоматического останова после выгрузки емкости.


ПРОИЗВОДИТЕЛЬНОСТЬ МОДЕЛЕЙ НАСОСОВ

1-ступенчатый Макс. 6 бар

2-ступенчатый Макс. 12 бар

1-ступенчатый «S» Макс. 10 бар

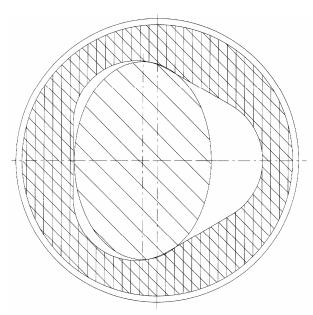
2-ступенчатый «S» Макс. 22 бар

h – напор, бар
Q – подача, м³/ч
Na – мощность, л.с.
n – частота вращения, об/мин

																		3	наче	ения	при	водя	ятся	для
	Кол-во	T	1	l	l				1		l				1								pe 2	
Размер	сту-	Вариант N	вариант Е	h		200		300		400		500	-	600		700		800		900	1	1000	n = '	
	пеней		MAE	1	Q	Na	Q	Na	Q	Na 0.23	Q 0,38	Na 0,24	Q 0,45	Na 0,25	Q 0,52	Na 0,26	Q	Na 0,27	Q 0,68	Na 0,28	Q 0.75	Na 0,3	Q 1,05	Na 0,35
	1			2					0,3	0,26	0,38	0,27	0,45		0,52	0,20	0,6	0,31	0,68	0,33	0.75	0,34	1,05	0,39
25	-			4					0,25	0,28	0,33	0,3	0,4	0,32	0,46	0,33	0,54	0,35	0,52	0,37	0.68	0,39	0,96	0,45
	2		MAE	6							0,38	0,35	0,45	0,38	0,52	0,40	0,6	0,43	0,66	0,46	0,75	0,49	1,05	0,58
		MAN	MAE	10					0.0	0.05	0,35	0,45	0,42	0,5	0,5	0,53	0,56	0,56	0,64	0,60	0.71	0,64	1	0,78
	1	MCN	MAE MCE	3					0,6	0,35	0,8	0,35	0,7	0,35	1,2 0,9	0,4	1,4	0,45	1,6 1,3	0,5 0,55	1.8	0,55	2,6	0,8
40	•			6					0,0	0,00	0,0	0,00	0,2	0,45	0,4	0,5	0,6	0,55	0,8	0,6	1	0,65	1,8	0,9
	2	MAN	MAE	9							0,3	0,6	0,5	0,7	0,7	0,8	0,9	0,9	1,1	1	1.3	1,1		
		MCN	MCE	12									0.3	0,9	0,5	1	0,7	1,1	0,9	1,3	1.1	1,4		
	4	MAN - MIN MCN - MCRN	MAE - MIE MCE - MCRE	1	0,9	0,6	1,5	0,6	2	0.6	2,6	0,7	3,2	1	3,8	1,2	4,3	1,2	4,8	1,4	5.4	1,6	7,8	2,1
FΛ	1	MC2RN		3 6	0,8	0,8	1,3	0,9 1,1	1,8 1,6	1,1	2,4	0,9 1,2	3 2,8	1,2 1,5	3,5	1,3 1,6	4,1 3,9	1,4	4,6 4,4	1,6 2	5.2 4,9	1,8	\vdash	
50		MAN - MIN	MAE - MIE	9	0,2	1,1	0,9	1,2	1,6	1,6	2,1	2	2,8	2,4	3,5	2,7	4,2	2,8	4,9	3,1	4,0	2,0		
	2	MCN - MCRN	MCE - MCRE	12	-,-	-,,'	0,3	1,3	1,2	1,8	1,4	2,2	2	2,6	2,8	2,8	3,3	3,1	4	3,7			\vdash	
		MC2RN MAN - MIN	MAE - MIE	1	2,5	1,1	3,8	1,1	5	1,4	6,4	1,5	7,6	1,7	8,7	2,0	9,7	2.3	11,3	2,6				
	1	MCN - MCRN	MCE - MCRE	3	2,3	1,2	3,6	1,2	4,5	1,6	5,9	1,9	7,3	2,2	8,4	2,4	9,4	2,5	10,8	3,2				
		MC2RN		6	1,7	1,5	2,8	1,7	4	2,1	5	2,6	6,5	2,8	7,5	3,2	8,5	3,4						
65	2	MAN - MIN - MCN MCRN - MC2RN	MAE - MIE MCE - MCRE	9	1	2,8	2,6	3,3	4,1	3,7	5,7	4,2	7,3	4,9	8,8	6							Ш	
03				12	0,3	3	1,6	3,4	3,6	3,9	5,5	4,6	7	5,7										
	2S	MAN - MIN MCN - MCRN	MAE - MIE MCE - MCRE	14	1,7	3,3	3,3	3,7 4,1	4,8 4,5	5 5,5	6,2	6,4											 	
	23	MC2RN		20	1,7	3,6	2,6	4,6	4,1	6,1													\vdash	
		MAN - MIN	MAE - MIE	1	4,7	2,2	7,5	2,5	10,1	2,9	12,7	3,2	15,5	3,5	18	3,7								
	1	MCN - MCRN MC2RN	MCE - MCRE	3	4,4	2,5	7	3	9,6	3,3	12,1	3,8	14,8	4,5	17,4	5,2								
				6	3,8	2,9	6,4	3,5	8,9	4,3	10,9	5	13,4	6,2										ļ
80	2	MAN - MIN - MCN MCRN - MC2RN	MAE - MIE MCE - MCRE	9	3,2 2,4	2,9 3,2	5,5	3,5	8	4,5 5,3	11	6 7,5	14	7,2									\vdash	
		MAN - MIN	MAE - MIE	14	3,8	7,8	4,4 6,8	3,9 9,2	7,3 9,8	11	12,8	13,2												
	28	MCN - MCRN	MCE - MCRE	17	2,9	8,2	5,8	9,8	9	11,9	,-	,=												
		MC2RN		20	0,7	9	3,5	11	6,5	14														
	_	MAN - MIN MCN - MCRN	MAE - MIE MCE - MCRE	1	9,5	3,2	14,5	3,4	19,5	3,8	25	4,4	30	5										
	1	MC2RN	WICE - WICKE	3 6	7,8 6	3,7	12,8	4,1	17,7	5	22,5 19,5	6,2	28	7,2									\vdash	
400		MAN - MIN - MCN	MAE - MIE	9	5,5	4,2 6	10,5	5,8 8,1	15 15,5	7,5 12	20	9,2											\vdash	
100	2	MCRN - MC2RN	MCE - MCRE	12	4	7,3	7	10	12	14,5	16,2	17		1										
		MAN - MIN	MAE - MIE	14	6	14	11,2	16	16,4	18														
	2S	MCN - MCRN MC2RN	MCE - MCRE	17	5	15,2		17,3																
			MAE - MIE	20	2,5	16	7,5		40	7.	E0.	0.5					<u> </u>						 	
	1	MAN - MIN MCN - MCRN	MCE - MCRE	3	18,5 14	4,5 5,5	30 25,5	5,5 8,0	42 38	7,5 10,5	53	9,5											$\vdash \vdash$	-
	•	MC2RN		6	9	6,5	20	11,3		.0,0				1										
125	2		MAE - MIE	9	11	14,5	23	18,3	34,4	24														
123		MCRN - MC2RN	MCE - MCRE	12	8	16,5	19	22	30	30														
	26	MAN - MIN MCN - MCRN	MAE - MIE MCE - MCRE	14	9,6	24	21	36	31	47													 	
	2S	MC2RN	mor more	17 20	7,4 3,5	32 36	18 12	44 52																
		MAN - MIN	MAE - MIE	2	29	6,1	44	8	59	10	74	12												
130	1	MCN - MCRN	MCE - MCRE	4	26,8	8	42	11,9	57	15	72,5	19												
		MC2RN		6	23	10	38,4	15	54	20	69	25												
		MAN - MIN MCN - MCRN	MAE - MIE MCE - MCRE	2	44	8	67	12	90	16	113	20					ļ				ļ			
	1	MC2RN	MOL - WICKE	4	32	12	56	17	78 62	23	101	29											$\vdash \vdash$	
150		MAN - MIN	MAE - MIE	6 1	16 44	14,5 10	40 70	22 12	93	30 16	85 115	37 21												
130	40	MCN - MCRN	MCE - MCRE	4	40	12	62	18	85	26	105	38											\vdash	
	1S	MC2RN		8	31	20	52	30	72	42														
				10	20	24	40	38																

ПРОИЗВОДИТЕЛЬНОСТЬ МОДЕЛЕЙ С ДВУХЗАХОДНЫМ ВИНТОМ

Новая серия винтовых насосов, предлагаемая вместе с существующей серией, является логическим продолже нием наших постоянных поисков вариантов улучшения производительности продукции.


Новые геометрические формы, еще более гладкие поверхности, дополнительное снижение трения, увеличенные объемы – все это способствует достижению указанной цели.

Новые насосы идеально вписываются в линии уже установленных насосов существующих серий без модификации их размеров и идеально взаимозаменяемы с ними.

Предлагаемый вариант винтовых насосов CSF выпускается в модификациях с широким диапазоном производительности, что делает его пригодным для самых разнообразных целей.

В новой серии сохранены все прежние размеры насосов, комплектующие, приводные механизмы, варианты и использованные материалы. При этом, однако, они обладают следующими преимуществами:

- Увеличенная масса и, следовательно, увеличенный объем перекачиваемого материала
- Пониженная несоосность
- Пониженная масса ротора
- Улучшенная общая производительность
- A STATE - Пониженная скорость движения внутренних компонентов и, следовательно, увеличенная скорость потока
- Улучшенные показатели поперечной перекачки
- Равномерная толщина эластомерной стенки и, следовательно, пониженный крутящий момент и пониженная потребляемая мощность

Новая улучшенная форма ротора и статора Увеличенная объемная масса и, следовательно, увеличенный объем перекачиваемого материала Повышенная производительность Улучшенные значения NPSH

> **h** – напор, бар **Q** – подача, $M^3/4$

Na – мощность, л.с.

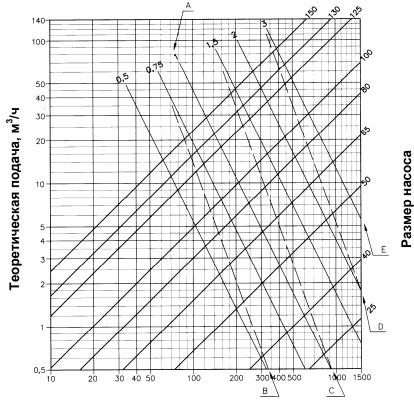
n - частота вращения, об/мин

Значения приводятся для воды при температуре 20 °C

Размер	Кол-во сту-	Вариант N	Вариант Е	h	n =	200	n =	300	n =	400	n =	500	n = (600	n = 7	00	n =	800	n =	900	n = '	1000	n = '	1400
Гизмор	пеней	Вариант 🛮 🔻	Вариант 느		ø	Na	Q	Na	Q	Na	σ	Na	Q	Na	Q	Na	ø	Na	Q	Na	Q	Na	Q	Na
		MAN-MIN	MAE-MIE	1	3,7	1,1	5,6	1,2	7,4	1,3	9,2	14	11,1	1,5	12,9	1,8	14,7	2,1						
63	1	MCN-MCRN	MCE-MCRE	2	3,6	1,2	5,4	1,4	7,2	1,5	8,9	1,8	10,7	2,1	12,5	2,6	14,2	3						
		MC2RN		4	3,3	17	5	1,8	6,6	2,2	8,3	27	10	3,5	11,7	4,4	134	5,4						
		MAN-MIN	MAE-MIE	1	6,5	1,8	10,1	2,1	11,8	2,3	17,5	3,4												
83	4	MCN-MCRN	MCE-MCRE	2	6,4	2	9,8	2,6	11,7	3	16,8	4,2												
03		MC2RN		4	6	2,3	9,4	3,2	13	4,4	16,4	6,5												
				6	5,6	2,6	9	4	12,6	5,6	15,9	7,6												
		MAN-MIN	MAE-MIE	1	14	2,8	21,1	3,5	28,5	4,6	35,4	6												
103	1	MCN-MCRN	MCE-MCRE	2	12,6	3,6	19,9	4,2	26,9	5,6	33,9	7,3												
		MC2RN		4	11	4,5	18,2	5,5	25,4	7,2	32,5	9,5												

ВЫБОР РАЗМЕРА НАСОСА

ДИАГРАММА ДЛЯ ВЫБОРА ВИНТОВОГО НАСОСА


A = Скорость привода ротора/статора, м/с

В = Повышенная абразивность -Повышенная вязкость — — —

С = Средняя абразивность — Средняя вязкость — — —

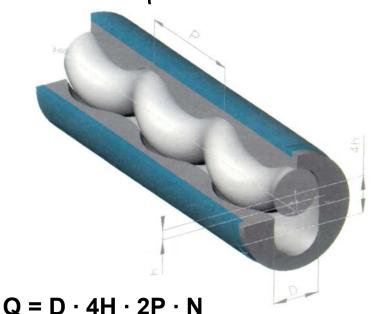
D = Незначительная абразивность -Незначительная вязкость — -

E = Отсутствие абразивности

Частота вращения, об/мин

РАСЧЕТ ПОТРЕБЛЯЕМОЙ МОЩНОСТИ

Q = Скорость потока, л/мин


Na = Потребляемая мощность, л.с.

= Общий напор, метров водного столба

= Удельный вес жидкости, кг/дм³

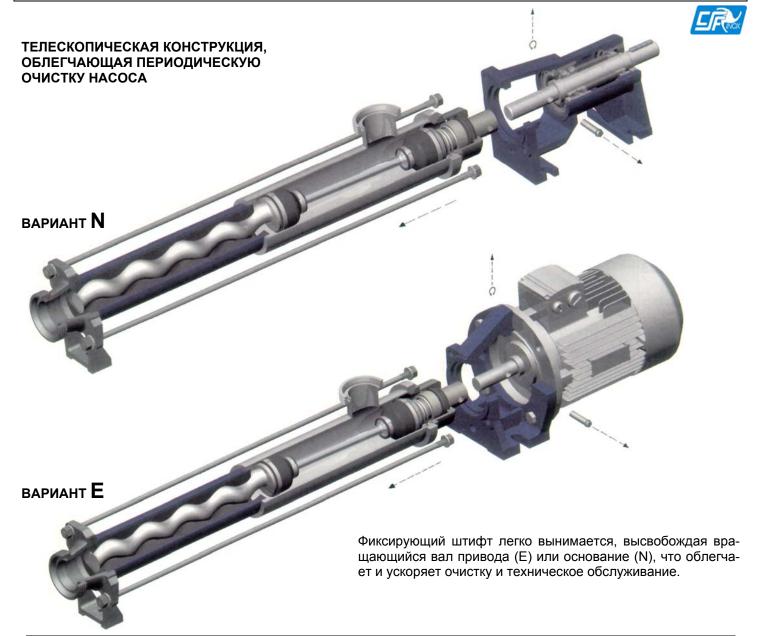
= Общая подача (произведение объемной и механической подач)

$$NA = \frac{\mathbf{Q} \cdot \mathbf{H} \cdot \mathbf{\gamma}}{4500 \cdot \mathbf{\eta}}$$

РАСЧЕТ ТЕОРЕТИЧЕСКОЙ ПОДАЧИ

Подача винтовых объемных насосов CSF прямо пропорциональная частоте вращения в об/мин:

= Скорость потока, л/мин


Н = Несоосность ротора, дм

= Шаг резьбы ротора, дм = Шаг резьбы статора

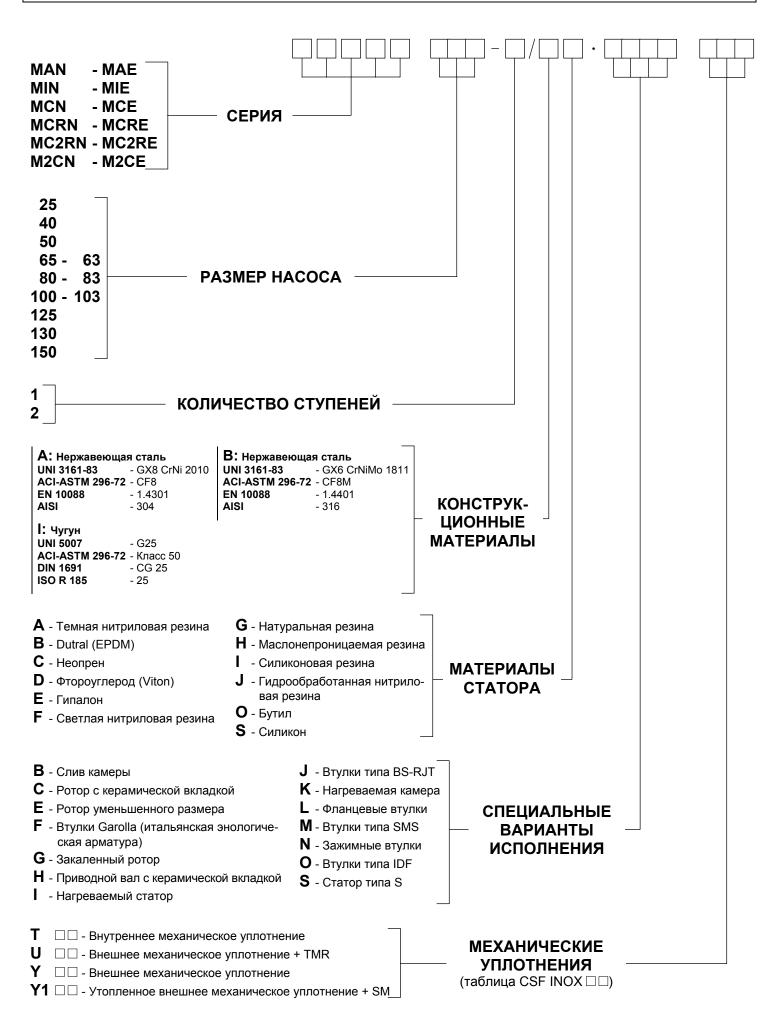
= Частота вращения, об/мин n

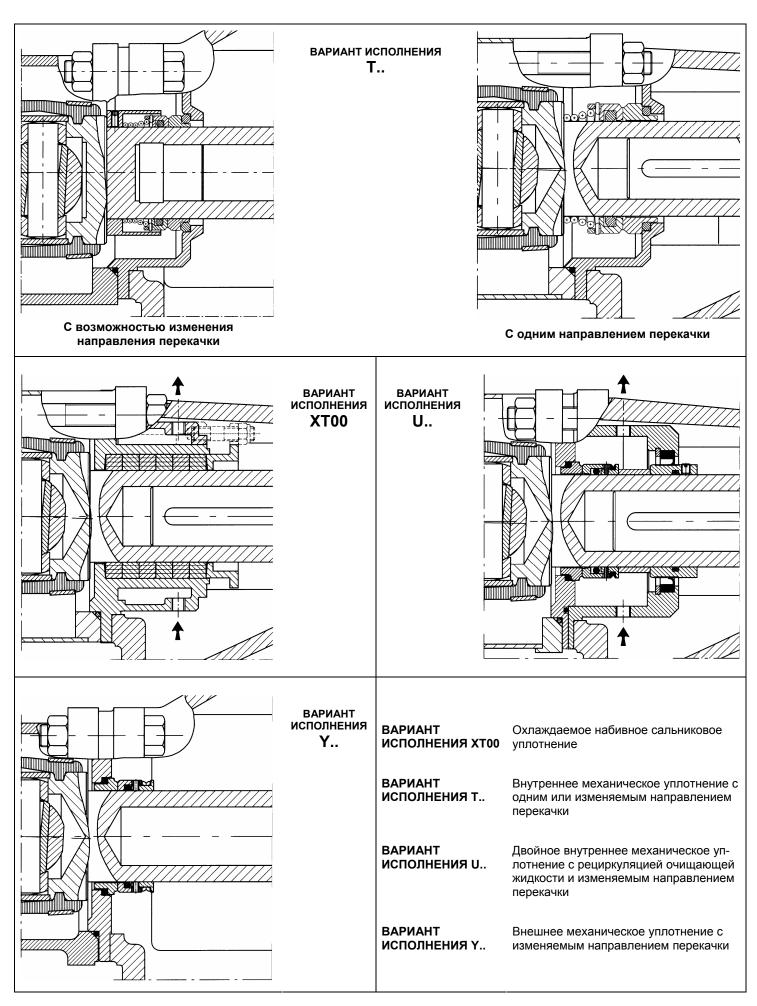
d = Диаметр ротора, дм

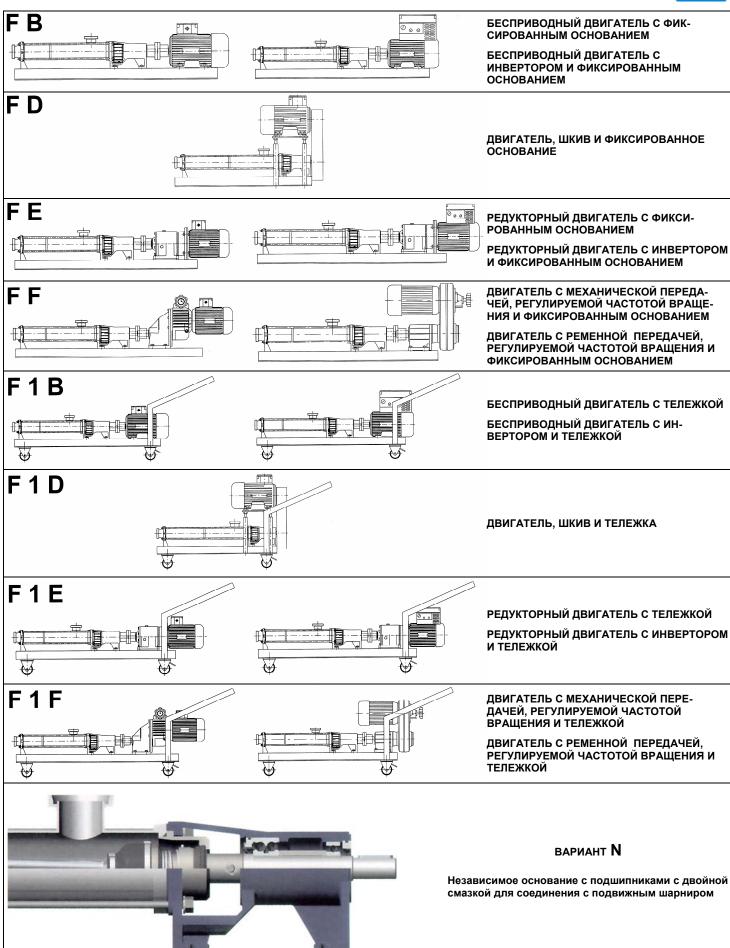
СПАРЕННЫЕ ВАРИАНТЫ

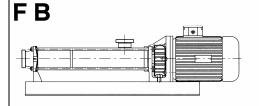
ВАРИАНТЫ СОЕДИНЕНИЙ

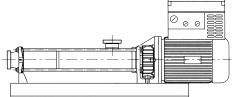
Износостойкий вариант исполнения с закаленными втулками для тяжелых режимов работы и повышенных нагрузок, а также с защитными гильзами.

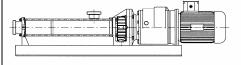


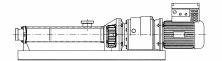

Из износостойкой нержавеющей стали с кольцевыми уплотнениями или защитными гильзами.


ВЫБОР МОДЕЛИ НАСОСА


МЕХАНИЧЕСКИЕ УПЛОТНЕНИЯ



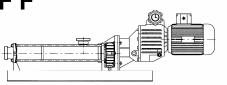


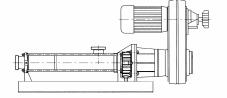


БЕСПРИВОДНЫЙ ДВИГАТЕЛЬ С ФИК-СИРОВАННЫМ ОСНОВАНИЕМ

БЕСПРИВОДНЫЙ ДВИГАТЕЛЬ С ИНВЕРТОРОМ И ФИКСИРОВАННЫМ ОСНОВАНИЕМ

FΕ

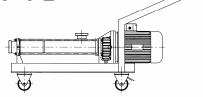


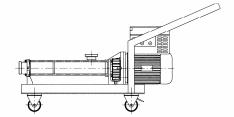


РЕДУКТОРНЫЙ ДВИГАТЕЛЬ C ФИКСИ-РОВАННЫМ ОСНОВАНИЕМ

РЕДУКТОРНЫЙ ДВИГАТЕЛЬ С ИНВЕРТОРОМ И ФИКСИРОВАННЫМ ОСНОВАНИЕМ

FF

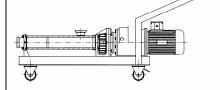


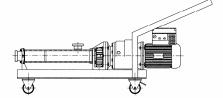


ДВИГАТЕЛЬ С МЕХАНИЧЕСКОЙ ПЕРЕ-ДАЧЕЙ, РЕГУЛИРУЕМОЙ ЧАСТОТОЙ ВРАЩЕНИЯ И ФИКСИРОВАННЫМ ОС-НОВАНИЕМ

ДВИГАТЕЛЬ С РЕМЕННОЙ ПЕРЕДАЧЕЙ, РЕГУЛИРУЕМОЙ ЧАСТОТОЙ ВРАЩЕНИЯ И ФИКСИРОВАННЫМ ОСНОВАНИЕМ

F 1 B

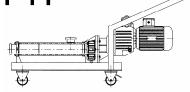


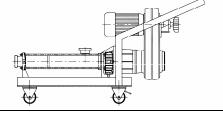


БЕСПРИВОДНЫЙ ДВИГАТЕЛЬ С ТЕ-ЛЕЖКОЙ

БЕСПРИВОДНЫЙ ДВИГАТЕЛЬ С ИН-ВЕРТОРОМ И ТЕЛЕЖКОЙ

F 1 F

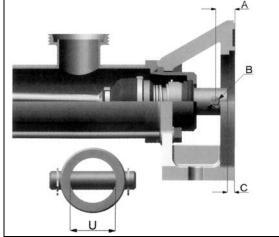




РЕДУКТОРНЫЙ ДВИГАТЕЛЬ С ТЕЛЕЖ-КОЙ

РЕДУКТОРНЫЙ ДВИГАТЕЛЬ С ИНВЕРТОРОМ И ТЕЛЕЖКОЙ

F1F



ДВИГАТЕЛЬ С МЕХАНИЧЕСКОЙ ПЕРЕ-ДАЧЕЙ, РЕГУЛИРУЕМОЙ ЧАСТОТОЙ ВРАЩЕНИЯ И ТЕЛЕЖКОЙ

ДВИГАТЕЛЬ С РЕМЕННОЙ ПЕРЕДАЧЕЙ, РЕГУЛИРУЕМОЙ ЧАСТОТОЙ ВРАЩЕНИЯ И ТЕЛЕЖКОЙ

вариант Е

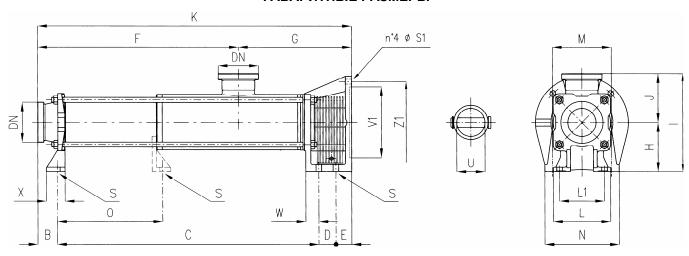
ВАЛ НАСОСА: РАЗМЕРЫ СЦЕПКИ

					ТИП				
	M25	M40	M50	M63 M65	M83 M80	M103 M100	M125	M130	M150
Α	15	20	25	25	26	30	32	32	32
Внт	6	8	10	14	16	16	18	18	18
С	=	=	10	10	10	10	10	10	10
U H7	14	19	24	32	35	42	55	55	55

ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ

КАТАЛОГ РАЗМЕРОВ Серия НАСОСОВ ОБЪЕМНОГО ДЕЙСТВИЯ

Код CED: ZMAE


Насосы для пищевой промышленности с большой заборной камерой и полностью исключающие образование зон застаивания продукции.

Все детали насоса, вступающие в контакт с пищевыми продуктами, выполнены из полированной или гладкой нержавеющей стали. Впускные и выходные патрубки насосов имеют резьбу в соответствии со стандартом DIN 11851 и по заказу могут выполняться в модификациях SMS, CLAMP, RJT-BS и IDF.

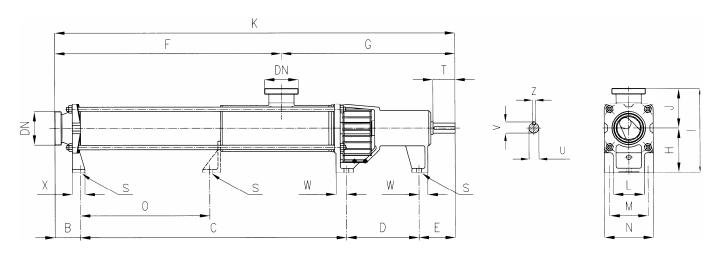
Резиновый статор насоса изготовлен методом прямой вулканизации резины на стальную трубу, что позволяет исключить его вращение отдельно от трубы при работе.

Специальная телескопическая конструкция насоса позволяет производить его полную разборку без необходимости снятия основания и приводного механизма, что значительно облегчает процедуру осмотра его деталей, очистки и технического обслуживания.

Насосы серии МАЕ соединяются с приводным двигателем напрямую, что снижает до минимума количество необходимых деталей, уменьшает размеры и стоимость, сохраняя улучшенные характеристики и простоту сборки и разборки, присущие насосам серии МАN.

Модели	В	С	D	E	F	G	К	Н	J	I	L	L1	М	N	0	DN	s	U	V 1	Z1	S1	х	w	Масса кг
MAE 25-1	-	*	-	-	233	115	348	*	62	*	-	-	*	*	-	25	-	14	70	85	7	-	-	5
MAE 40-1	53	*	-	-	344	131	475	*	79	*	42	-	*	*	-	40	10	19	110	130	9	27	-	7
MAE 40-2	53	*	-	-	444	131	575	*	79	*	42	-	*	*	-	40	10	19	110	130	9	27	-	9
MAE 50-1	71	527	-	49	449	198	647	100	86	200	68	-	110	150	-	50	12	24	130	165	13	35	43	19
MAE 50-2	71	677	-	49	599	198	797	100	86	200	68	-	110	150	-	50	12	24	130	165	13	35	43	24
MAE 65-1	71	572	-	59	438	264	702	125	113	250	88	-	140	180	-	65	14	32	180	215	14	35	52	32
MAE 65-2	71	772	-	59	638	264	902	125	113	250	88	-	140	180	363	65	14	32	180	215	14	35	52	38
MAE 80-1	82	619,5	-	61	536	226,5	762,5	140	119,5	265	100	-	150	190	-	80	14	35	180	215	14	39	56	39
MAE 80-2	82	876	-	61	786	233	1019	140	132	265	100	-	150	190	458	80	14	35	180	215	14	39	56	50
MAE 100-1	53	854,5	55	51	648	365	1013	160	158	310	185	145	190	240	-	100	18	42	230	265	16	60	42	75
MAE 100-2	53	1160,5	55	51	954	365	1319	160	158	310	185	145	190	240	606	100	18	42	230	265	16	60	42	101
MAE 125-1	57	1077	67	50	814	437	1251	180	174	355	215	170	230	280	-	100	18	55	230 250	265 300	16	65	43	125
MAE 125-2	57	1477	67	50	1214	437	1651	180	174	355	215	170	230	280	796	100	18	55	230 250	265 300	16	65	43	165
MAE 130-1	57	1391	67	50	1128	437	1565	180	174	355	215	170	230	280	711	100	18	55	230 250	265 300	16	65	43	-

Код CED: ZMAN



Насосы для пищевой промышленности с большой заборной камерой и полностью исключающие образование зон застаивания продукции.

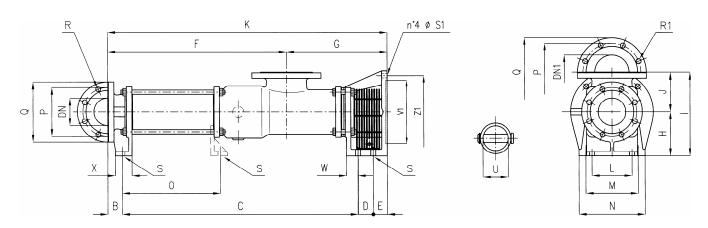
Все детали насоса, вступающие в контакт с пищевыми продуктами, выполнены из полированной или гладкой нержавеющей стали. Впускные и выходные патрубки насосов имеют резьбу в соответствии со стандартом DIN 11851 и по заказу могут выполняться в модификациях SMS, CLAMP, RJT-BS и IDF.

Резиновый статор насоса изготовлен методом прямой вулканизации резины на стальную трубу, что позволяет исключить его вращение отдельно от трубы при работе.

Специальная телескопическая конструкция насоса позволяет производить его полную разборку без необходимости снятия основания и приводного механизма, что значительно облегчает процедуру осмотра его деталей, очистки и технического обслуживания.

Модели	В	С	D	Е	F	G	К	Н	J	I	L	L1	М	N	0	DN	S	Т	U	٧	Z	Х	W	Масса кг
MAN 40-1	53	404	-	166	344	279	623	90	79	169	42	-	60	82	-	40	10	35	14	17	5	27	37	9
MAN 40-2	53	504	-	166	444	279	723	90	79	169	42	-	60	82	-	40	10	35	14	17	5	27	37	11
MAN 50-1	71	512	152	81	449	367	816	100	86	186	68	-	85	110	-	50	12	50	25	28	8	35	27	22
MAN 50-2	71	662	152	81	559	367	966	100	86	186	68	-	85	110	-	50	12	50	25	28	8	35	27	27
MAN 65-1	71	549	204	102	438	488	926	125	113	238	88	-	108	138	-	65	14	62	28	31	8	35	25	35
MAN 65-2	71	749	204	102	638	488	1126	125	113	238	88	-	108	138	363	65	14	62	28	31	8	35	25	42
MAN 80-1	82	594,5	222	123,5	536	486	1022	140	119,5	259,5	100	-	115	155	-	80	14	75	35	38,5	10	39	34	49
MAN 80-2	82	851,5	222	123,5	786	493	1279	140	132	272	100	1	115	155	458	80	14	75	35	38,5	10	39	34	60
MAN 100-1	53	848	274	141	648	668	1316	160	158	318	185	145	145	185	-	100	18	90	42	46	12	60	35	94
MAN 100-2	53	1154	274	141	954	668	1622	160	158	318	185	145	145	185	606	100	18	90	42	46	12	60	35	120
MAN 125-1	57	1077	318	167	814	805	1619	180	174	354	215	170	170	215	-	100	18	110	55	58,5	16	65	40	150
MAN 125-2	57	1477	318	167	1214	805	2019	180	174	354	215	170	170	215	796	100	18	110	55	58,5	16	65	40	190
MAN 130-1	57	1391	318	167	1128	805	1933	180	174	354	215	170	170	215	711	100	18	110	55	58,5	16	65	40	-

Код CED: ZMIE



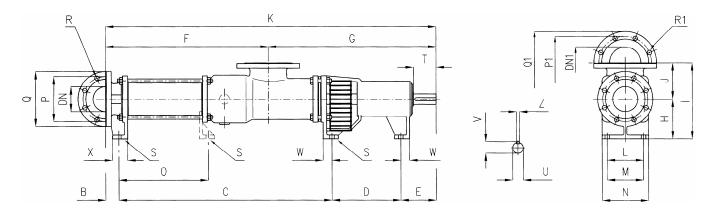
Насосы для промышленности, рассчитанные на тяжелые режимы работы. Заборная камера, герметичная камера и патрубок подачи выполнены литыми и могут быть сделаны по заказу из нержавеющей стали или чугуна. Вращающиеся детали насоса сделаны из нержавеющей стали.

Впускные и выпускные отверстия выполнены с фланцами в соответствии со стандартом UNI 2223 PN16. резиновый статор насоса изготовлен методом прямой вулканизации резины на стальную трубу, что позволяет исключить его вращение отдельно от трубы при работе.

Насосы серии MIE соединяются с приводным двигателем напрямую, что снижает до минимума количество необходимых деталей, уменьшает размеры и стоимость, сохраняя улучшенные характеристики и простоту сборки и разборки, присущие насосам серии MIN.

Модели	В	С	D	E	F	G	К	Н	J	I	L	М	N	0	DN	Р	Q	Кол-во отв.	R	DN1	P1	Q1	R1	Кол-во отв.	s	Т	U	٧	z	х	w	Масса кг
MIE 50-1	53	558	-	49	462	198	660	100	93	193	85	110	150	1	50	125	165	18	4	50	125	165	18	4	12	24	130	165	13	40	43	26
MIE 50-2	53	708		49	612	198	810	100	93	193	85	110	150	1	50	125	165	18	4	50	125	165	18	4	12	24	130	165	13	40	43	30
MIE 65-1	44	602	-	59	438	267	705	125	120	245	108	140	180	-	65	145	185	18	4	80	160	200	18	8	14	32	180	215	14	45	52	39
MI E 65-2	44	802	-	59	638	267	905	125	120	245	108	140	180	393	65	145	185	18	4	80	160	200	18	8	14	32	180	215	14	45	52	45
MIE 80-1	41	654	-	61	481	277	758	140	130	270	115	150	190	-	80	160	200	18	8	100	180	220	18	8	14	35	180	215	14	50	56	52
MIE 80-2	41	904	-	61	731	277	1008	140	130	270	115	150	190	498	80	160	200	18	8	100	180	220	18	8	14	35	180	215	14	50	56	61
MIE 100-1	52,5	854	55	51	648	365	1013	160	145	305	145	190	240	-	100	180	220	18	8	125	210	250	18	8	18	42	230	265	16	60	42	90
MIE 100-2	52,5	1160	55	51	954	365	1316	160	145	305	145	190	240	606	100	180	220	18	8	125	210	250	18	8	18	42	230	265	16	60	42	116
MIE 125-1	46	1080	67	50	806	437	1243	180	170	350	170	230	280	-	125	210	250	18	8	150	240	285	22	8	18	55	230 250	265 300	18	65	43	155
MIE 125-2	46	1480	67	50	1206	437	1643	180	170	350	170	230	280	796	125	210	250	18	8	150	240	285	22	8	18	55	230 250	265 300	18	65	43	195
MIE 130-1	46	1394	67	50	1120	437	1557	180	170	350	170	230	280	711	125	210	250	18	8	150	240	285	22	8	18	55	230 250	265 300	18	65	43	-
MIE150-1S	66	1882	70	48,5	1680	388	2068	200	210	410	200	200	250	519	150	240	285	22	8	150	240	285	22	8	22	55	250	300	19	90	75	-

Код CED: ZMIN

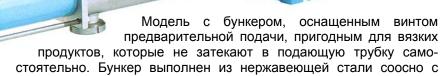

MIN

Насосы для промышленности, рассчитанные на тяжелые режимы работы. Заборная камера, герметичная камера и патрубок подачи выполнены литыми и могут быть сделаны по заказу из нержавеющей стали или чугуна. Вращающиеся детали насоса сделаны из нержавеющей стали.

Впускные и выпускные отверстия выполнены с фланцами в соответствии со стандартом UNI 2223 PN16. Резиновый статор насоса изготовлен методом прямой вулканизации резины на стальную трубу, что позволяет исключить его вращение отдельно от трубы при работе.

Насосы серии MIE соединяются с приводным двигателем напрямую, что снижает до минимума количество необходимых деталей, уменьшает размеры и стоимость, сохраняя улучшенные характеристики и простоту сборки и разборки, присущие насосам серии MIN.

Специальная телескопическая конструкция насоса позволяет производить его полную разборку без необходимости снятия основания и приводного механизма, что значительно облегчает процедуру осмотра его деталей, очистки и технического обслуживания.



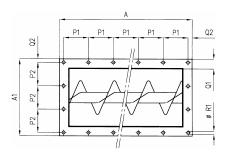
Модели	В	С	D	E	F	G	К	Н	J	I	L	М	N	0	DN	Р	Q	R	Кол-во отв.	DN1	P1	Q1	R1	Кол-во отв.	s	Т	U	V	Z	х	w	Масса кг
MIN 50-1	53	543	152	81	462	367	829	100	93	193	85	85	110	-	50	125	165	18	4	50	125	165	18	4	12	50	25	28	8	40	27	29
MIN 50-2	53	693	152	81	612	367	979	100	93	193	85	85	110	-	50	125	165	18	4	50	125	165	18	4	12	50	25	28	8	40	27	33
MIN 65-1	44	579	204	102	438	491	929	125	120	245	108	108	138	-	65	145	185	18	4	80	160	200	18	8	14	62	28	31	8	45	25	42
MIN 65-2	44	779	204	102	638	491	1129	125	120	245	108	108	138	393	65	145	185	18	4	80	160	200	18	8	14	62	28	31	8	45	25	49
MIN 80-1	41	640,5	222	123,5	481	546	1027	140	130	270	115	115	155	-	80	160	200	18	8	100	180	220	18	8	14	75	35	38,5	10	50	34	59
MIN 80-2	41	890,5	222	123,5	731	546	1277	140	130	270	115	115	155	498	80	160	200	18	8	100	180	220	18	8	14	75	35	38,5	10	50	34	70
MIN 100-1	52,5	848,5	274	141	648	668	1316	160	145	305	145	145	185	-	100	180	220	18	8	125	210	250	18	8	18	90	42	46	12	60	35	110
MIN 100-2	52,5	1154,5	274	141	954	668	1622	160	145	305	145	145	185	606	100	180	220	18	8	125	210	250	18	8	18	90	42	46	12	60	35	136
MIN 125-1	46	1080	318	167	806	805	1611	180	170	350	170	170	215	-	125	210	250	18	8	150	240	285	22	8	18	110	55	58,5	16	65	40	180
MIN 125-2	46	1480	318	167	1206	805	2011	180	170	350	170	170	215	796	125	210	250	18	8	150	240	285	22	8	18	110	55	58,5	16	65	40	220
MIN 130-1	46	1394	318	167	1120	805	1925	180	170	350	170	170	215	711	125	210	250	18	8	150	240	285	22	8	18	110	55	185	16	65	40	-
MIN 150-1S	66	1894	298	177	1680	755	2435	200	210	410	200	200	250	519	150	240	285	22	8	150	240	285	22	8	22	110	55	58,5	16	90	50	265

Код CED: ZMCE

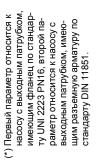
MCE

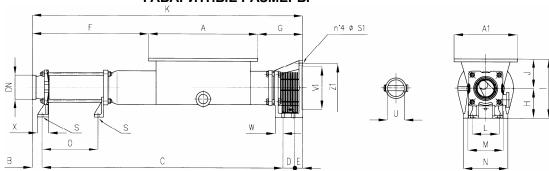
насосом. Верхняя часть бункера выполнена в виде прямоугольного фланца, к

которому может быть подключена любая система доставки продукции.


Выходной патрубок насоса имеет арматуру в соответствии со стандартом DIN 11851 или фланец по стандарту UNI 2223 PN16. По заказу он может выполняться в модификациях SMS, CLAMP, RJT-BS и IDF.

Резиновый статор насоса изготовлен мето-


дом прямой вулканизации резины на стальную трубу, что позволяет исключить его вращение отдельно от трубы при работе. Специальная телескопическая конструкция насоса позволяет производить его полную разборку без необходимости снятия основания и приводного механизма, что значительно облегчает процедуру осмотра его деталей, очистки и технического обслуживания.


Насосы серии МСЕ соединяются с приводным двигателем напрямую, что снижает до минимума количество необходимых деталей, уменьшает размеры и стоимость, сохраняя улучшенные характеристики и простоту сборки и разборки, присущие насосам серии МСN.

Наличие крышки с патрубком позволяет использовать насос в типичных вариантах применения для серии МА.

тип	A	A 1	P1	P2	Q1	Q2	R1	Кол-во отв. A/A1
MCE 40-1	300	210	70	63,3	27,5	10	9	8/6
MCE 40-2	300	210	70	63,3	27,5	10	9	8/6
MCE 50-1	365	250	69	57,5	32,5	10	11	10/8
MCE 50-2	365	250	69	57,5	32,5	10	11	10/8
MCE 65-1	426	260	130	116	43	14	13	6/4
MCE 65-2	426	260	130	116	43	14	13	6/4
MCE 80-1	486	326	113	146	43	14	13	8/4
MCE 80-2	486	326	113	146	43	14	13	8/4
MCE 100-1	586	340	110	103	43	15	13	10/6
MCE 100-2	586	340	110	103	43	15	13	10/6
MCE 1251	756	420	102	96	53	18	18	14/8
MCE 125-2	756	420	102	96	53	18	18	14/8
MCE 130-1	756	420	102	96	53	18	18	14/8
MCE 150-1S	760	510	102	92	53	24	18	14/10

	1																			1								$\overline{}$
Модели	(*) B	(*) C	D	E	(*) F	G	(*) K	н	J	ı	(*) L	(*) L1	М	N	О	(*) DN	Р	Q	R	Кол-во отв.	s	U	V1	Z 1	S1	х	w	Масса кг
MCE 40-1	53	*	-	-	261,5	95,5	657	*	100	*	42	-	*	*	-	40	-	-	-	-	10	19	110	130	9	27	-	-
MCE 40-2	53	*	-	-	361,5	95,5	757	*	100	*	42	-	*	*	-	40	-	-	-	-	10	19	110	130	9	27	-	-
MCE 50-1	53 71	764 733	-	49	366,5 353,5	134,5	866 853	100	125	225	68	85	110	150	143 113	50	125	165	18	4	12	24	130	165	13	40 35	43	28
MCE 50-2	53 71	914 883	-	49	516,5 503,5	134,5	1016 1003	100	125	225	68	85	110	150	293 263	50	125	165	18	4	12	24	130	165	13	40 35	43	33
MCE 65-1	44 71	916 886	-	59	439,5 436,5	153,5	1019 1016	125	125	250	88	108	140	180	193 163	65	145	185	18	4	14	32	180	215	14	45 35	52	44
MCE 65-2	44 71	1116 1086	-	59	639,5 636,5	153,5	1219 1216	125	125	250	88	108	140	180	393 363	65	145	185	18	4	14	32	180	215	14	45 35	52	50
MCE 80-1	41 82	1027 988	-	61	489 491	156	1131 1133	140	140	280	100	115	150	190	248 208	80	160	200	18	8	14	35	180	215	14	50 39	56	57
MCE 80-2	41 82	1277 1238	-	61	739 741	156	1381 1383	140	140	280	100	115	150	190	498 458	80	160	200	18	8	14	35	180	215	14	50 39	56	68
MCE 100-1	53	1295	55	51	626	242	1454	160	160	320	185	145	190	240	300	100	180	220	18	8	18	42	230	265	16	60	42	98
MCE 100-2	53	1601	55	51	932	242	1760	160	160	320	185	145	190	240	606	100	180	220	18	8	18	42	230	265	16	60	42	124
MCE 125-1	46 57	1660 1657	67	50	807 815	260	1823 1831	180	180	360	215	170	230	280	396	125 100	210	250	18	8	18	55	230 250	300 250	18	65	43	156
MCE 125-2	46 57	2060 2057	67	50	1207 1215	260	2223 2231	180	180	360	215	170	230	280	796	125 100	210	250	18	8	18	55	230 250	265 300	18	65	43	196
MCE 130-1	46 57	1974 1971	67	50	1121 1129	260	2137 2145	180	180	360	215	170	230	280	711	125 100	210	250	18	8	18	55	230 265	265 300	18	65	43	-
MCE 150-1S	66	1882	70	48,5	1025	283	2068	200	200	400		200	200	250	519	150	240	285	22	8	22	55	250	300	19	90	75	-

СЕРИЯ МС С БУНКЕРОМ И ВИНТОМ ПРЕДВАРИТЕЛЬНОЙ ПОДАЧИ НЕЗАВИСИМОЕ ОСНОВАНИЕ

Код CED: ZMCE

продуктов, которые не затекают в подающую трубку самостоятельно. Бункер выполнен из нержавеющей стали соосно с

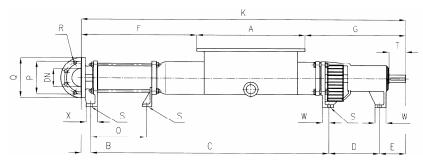
насосом. Верхняя часть бункера выполнена в виде прямоугольного фланца, к

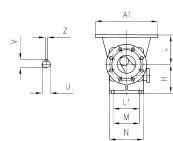
которому может быть подключена любая система доставки продукции.

Выходной патрубок насоса имеет арматуру в соответствии со стандартом DIN 11851 или фланец по стандарту UNI 2223 PN16. По заказу он может выполняться в модификациях SMS, CLAMP, RJT-BS и IDF.

Резиновый статор насоса изготовлен мето-

дом прямой вулканизации резины на стальную трубу, что позволяет исключить его вращение отдельно от трубы при работе. Специальная телескопическая конструкция насоса позволяет производить его полную разборку без необходимости снятия основания и приводного механизма, что значительно облегчает процедуру осмотра его деталей, очистки и технического обслуживания.


Наличие крышки с патрубком позволяет использовать насос в типичных вариантах применения для серии МА.



тип	A	A 1	P1	P2	Q1	Q2	R1	Кол-во отв. A/A1
MCE 40-1	300	210	70	63,3	27,5	10	9	8/6
MCE 40-2	300	210	70	63,3	27,5	10	9	8/6
MCE 50-1	365	250	69	57,5	32,5	10	11	10/8
MCE 50-2	365	250	69	57,5	32,5	10	11	10/8
MCE 65-1	426	260	130	116	43	14	13	6/4
MCE 65-2	426	260	130	116	43	14	13	6/4
MCE B0-1	486	326	113	146	43	14	13	8/4
MCE BO-2	486	326	113	146	43	14	13	8/4
MCE 100-1	586	340	110	103	43	15	13	10/6
MCE 100-2	586	340	110	103	43	15	13	10/6
MCE 125-1	756	420	102	96	53	18	18	14/8
MCE 125-2	756	420	102	96	53	18	18	14/8
MCE 130-1	756	420	102	96	53	18	18	14/8
MCE 150-1S	760	510	102	92	53	24	18	14/10

ГАБАРИТНЫЕ РАЗМЕРЫ

(*)Первый параметр относится к насосу с выходным патрубком, имеющим фланец по стандарту UNI 2223 РN16, второй параметр относится к насосу с выходным патрубком, имеющим разъемную арматуру по стандарту DIN 11851.

	(*)	/*\			/*\	l	(*)			l	(*)	/*\				/*\	1	1		Кол-во		1		1		1		Macca
Модели	(*) B	€0	D	E	*) F	G	K	н	J	1) _	(*) L1	М	N	0	(*) DN	Р	Q	R	OTB.	s	т	כ	v	z	х	w	КГ
MCM 40-1	53	586	-	166	261,5	243,5	805	90	100	190	42	-	60	82	1	40	-	-		-	10	35	14	17	5	27	40	-
MCN 40-2	53	686	-	166	361,5	243,5	905	90	100	190	42	-	60	82	-	40	-	-	-	-	10	35	14	17	5	27	40	-
MCN 50-1	53 71	749 718	152	81	366,5 353,5	303,5	1035 1022	100	125	225	68	85	85	110	143 113	50	125	165	18	4	12	50	25	28	8	40 35	27	31
MCN 50-2	53 71	899 868	152	81	516,5 503,5	303,5	1185 1172	100	125	225	68	85	85	110	293 263	50	125	165	18	4	12	50	25	28	8	40 35	27	36
MCN 65-1	44 71	893 863	204	102	439,5 436,5	377,5	1243 1240	125	125	250	88	108	108	138	193 163	65	145	185	18	4	14	62	28	31	8	45 35	25	48
MCN 65-2	44 71	1093 1063	204	102	639,5 636,5	377,5	1443 1440	125	125	250	88	108	108	138	393 363	65	145	185	18	4	14	62	28	31	8	45 35	25	55
MCN 80-1	41 82	1004 965	222	124	489 491	416	1391 1393	140	140	280	100	115	115	155	248 208	80	160	200	18	8	14	75	35	38,5	10	50 39	34	65
MCN 80-2	41 82	1254 1215	222	124	739 741	416	1641 1643	140	140	280	100	115	115	155	498 458	80	160	200	18	8	14	75	35	38,5	10	50 39	34	76
MCN 100-1	53	1289	274	141	626	545	1757	160	160	320	185	145	145	185	300	100	180	220	18	8	18	90	42	46	12	60	35	118
MCN 100-2	53	1595	274	141	932	545	2063	160	160	320	185	145	145	185	606	100	180	220	18	8	18	90	42	46	12	60	35	144
MCN 125-1	46 57	1660 1657	318	167	807 815	628	2191 2199	180	180	360	215	170	170	215	396	125 100	210	250	18	8	18	110	55	58,5	16	65	40	181
MCN 125-2	46 57	2060 2057	318	167	1207 1215	628	2591 2599	180	180	360	215	170	170	215	796	125 100	210	250	18	8	18	110	55	58,5	16	65	40	221
MCN 130-1	46 57	1974 1971	318	167	1121 1129	628	2505 2513	180	180	360	215	170	170	215	711	125 100	210	250	18	8	18	110	55	58,5	16	65	40	-
MCN 150-1S	66	1894	298	177	1025	650	2435	200	200	400	-	200	200	250	519	150	240	285	22	8	22	110	55	58,5	16	90	50	288

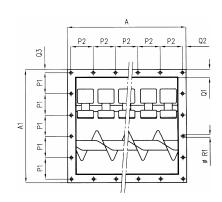
Код CED: ZMRE

MCRE

Модель с бункером, оснащенным винтом предварительной подачи, пригодным для продуктов в виде блоков или образующих наслоения

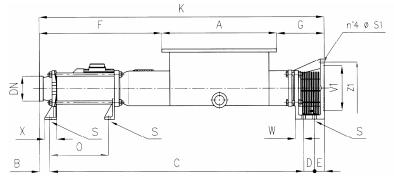
на винте. Бункер выполнен

из нержавеющей стали.

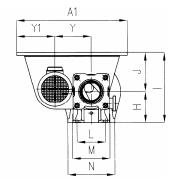

Лопастной измельчитель приводится в движение скоростным редукторным двигателем с независимым электроприводом, измельчает продукцию и вытесняет ее на винт предварительной подачи.

Кованый выходной патрубок насоса имеет арма-

туру в соответствии со стандартом DIN 11851 или фланец по стандарту UNI 2223 PN16. По заказу он может выполняться в модификациях SMS, CLAMP, RJT-BS и IDF.


Резиновый статор насоса изготовлен методом прямой вулканизации резины на стальную трубу, что позволяет исключить его вращение отдельно от трубы при работе. Специальная телескопическая конструкция насоса позволяет производить его полную разборку без необходимости снятия основания и приводного механизма, что значительно облегчает процедуру осмотра его деталей, очистки и технического обслуживания. Насосы серии МСRE соединяются с приводным двигателем напрямую, что снижает до минимума количество необходимых деталей, уменьшает размеры и стоимость, сохраняя улучшенные характеристики и простоту сборки и разборки, присущие насосам серии MCRN.

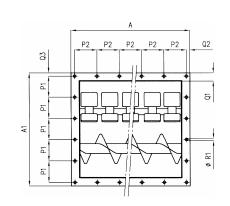
Наличие крышки с патрубком позволяет использовать насос в типичных вариантах применения для серии МА.



тип	A	A 1	P1	P2	Q1	Q2	03	R1	Кол-во отв. A/A1
MCRE 50-1	365	443	102,5	85	32,5	12,5	16,5	13	8/8
MCRE 50-2	365	443	102,5	85	32,5	12,5	16,5	13	8/8
MCRE 65-1	426	565	105	130	42,5	18	20	13	6/10
MCRE 65-2	426	565	105	130	42,5	18	20	13	6/10
MCRE 80-1	486	580	110	113	43	17	15	13	8/10
MCRE 82-2	486	580	110	113	43	17	15	13	8/10
MCRE 100-1	586	564	106	110	43	18	16	13	10/10
MCRE 100-2	586	564	106	110	43	18	16	13	10/10
MCRE 125-1	756	642	120	102	53	21	21	16	10/14
MCRE 125-2	756	642	120	102	53	21	21	16	10/14
MCRE 130-1	756	642	120	102	53	21	21	16	10/14
MCBE 150-1	760	782	92	102	55	23	23	18	14/16

Модели	(*) B	(*) C	D	E	(*) F	G	(*) K	Н	J	ı	(*) L	(*) L1	М	N	0	(*) DN	Р	Q	R	Кол-во отв.	s	U	V1	Z 1	S1	(*) X	Υ	Y1	w	Масса кг
MCRE 50-1	53 71	764 733	-	49	366,5 353,5	134,5	866 853	100	160	260	68	85	110	150	143 113	50	125	165	18	4	12	24	130	165	13	40 35	139	166	43	-
MCRE 50-2	53 71	914 883	-	49	516,5 503,5	134,5	1016 1003	100	160	260	68	85	110	150	293 263	50	125	165	18	4	12	24	130	165	13	40 35	139	166	43	-
MCRE 65-1	44 71	916 886	-	59	439,5 436,5	153,5	1019 1016	125	165	290	88	108	140	180	193 163	65	145	185	18	4	14	32	180	215	14	45 35	160	212,5	52	89
MCRE 65-2	44 71	1116 1086	-	59	639,5 636,5	153,5	1219 1216	125	165	290	88	108	140	180	393 363	65	145	185	18	4	14	32	180	215	14	45 35	160	212,5	52	96
MCRE 80-1	41 82	1027 988	-	61	489 491	156	1131 1133	140	180	320	100	115	150	190	248 208	80	160	200	18	8	14	35	180	215	14	50 39	160	228	56	108
MCRE 80-2	41 82	1277 1238	-	61	739 741	156	1381 1383	140	180	320	100	115	150	190	498 458	80	160	200	18	8	14	35	180	215	14	50 39	160	228	56	119
MCRE 100-1	53	1295	55	51	626	242	1454	160	200	360	185	145	190	240	300	100	180	220	18	8	18	42	230	265	16	60	185	195	42	155
MCRE 100-2	53	1601	55	51	932	242	1760	160	200	360	185	145	190	240	606	100	180	220	18	8	18	42	230	265	16	60	185	195	42	181
MCRE 125-1	46 57	1660 1657	67	50	807 815	260	1823 1831	180	200	380	215	170	230	280	396	125 100	210	250	18	8	18	55	230 250	265 300	18	65	210	222	43	219
MCRE 125-2	46 57	2060 2057	67	50	1207 1215	260	2223 2231	180	200	380	215	170	230	280	796	125 100	210	250	18	8	18	55	230 250	265 300	18	65	210	222	43	259
MCRE 130-1	46 57	1974 1971	67	50	1121 1129	260	2137 2145	180	200	380	215	170	230	280	711	125 100	210	250	18	8	18	55	230 250	265 300	18	65	210	222	43	-
MCRE 150-1	66	1882	70	48,5	1025	283	2068	200	250	450	-	200	200	250	519	150	240	285	22	8	22	55	250	300	19	90	262	266	75	-

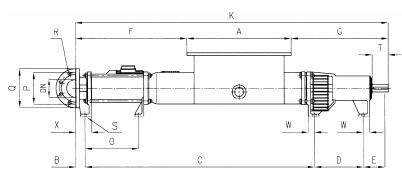
Код CED: ZMRN

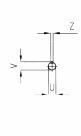


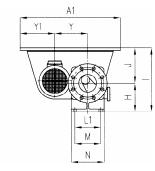
ние скоростным редукторным двигателем с независимым электроприводом, измельчает продукцию и вытесняет ее на винт предварительной подачи.

Кованый выходной патрубок насоса имеет арматуру в соответствии со стандартом DIN 11851 или фланец по стандарту UNI 2223 PN16. По заказу он может выполняться в модификациях SMS, CLAMP, RJT-BS и IDF.

Резиновый статор насоса изготовлен методом прямой вулканизации резины на стальную трубу, что позволяет исключить его вращение отдельно от трубы при работе. Специальная телескопическая конструкция насоса позволяет производить его полную разборку без необходимости снятия основания и приводного механизма, что значительно облегчает процедуру осмотра его деталей, очистки и технического обслуживания.


Наличие крышки с патрубком позволяет использовать насос в типичных вариантах применения для серии МА.



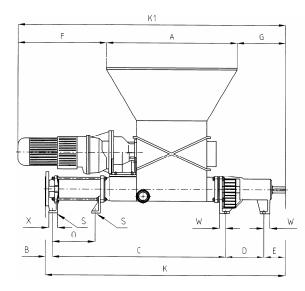

ТИП	Α	A1	P1	P2	Q1	Q2	Q3	R1	Кол-во отв A/A1
MCRN	365	443	102,5	85	32,5	12,5	16.5	13	8/8
MCRN 50-2	365	443	102,5	85	32,5	12,5	16,5	13	8/8
MCRN 65-1	426	565	105	130	42,5	18	20	13	6/10
MCRN 65-2	426	565	105	130	42.5	18	20	13	6/10
MCRN 80-1	486	580	110	113	43	17	15	13	8/10
MCRN 82-2	486	580	110	113	43	17	15	13	8/10
MCRN 100-1	586	564	106	110	43	18	16	13	10/10
MCRN 100-2	586	564	106	110	43	18	16	13	10/10
MCRN 125-1	756	642	120	102	53	21	21	16	10/14
MCRN 125-2	756	642	120	102	53	21	21	16	10/14
MCRN 130-1	756	642	120	102	53	21	21	16	10/14
MCRN 150-1	760	782	92	102	55	23	23	18	14/16

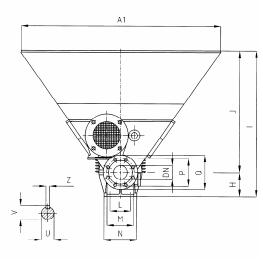
ГАБАРИТНЫЕ РАЗМЕРЫ

*)Первый параметр относится к насосу с выходным патрубком, имеющим фланец по стандарту UNI 2223 РИ16, второй параметр относится к насосу с выходным патрубком, имеющим разъемную арматуру по стандарту DIN 11851.

Модели	(*) B	(*) C	D	Е	(*) F	G	(*) K	н	J		(*)	(*) L1	м	N	o	(*) DN	Р	Q	R	Кол-во отв.	s	т	U	v	z	(*) X	Υ	Y1	w	Масса кг
MCRN 50-1	53 71	749 718	152	81	366,5 353,5	303,5	1035 1022	100	160	260	68	85	85	110	143 113	50	125	165	18	4	10	50	25	28	8	40 35	139	166	27	-
MCRN 50-2	53 71	899 868	152	81	516,5 503,5	303,5	11/2	100	160	260	68	85	85	110	293 263	50	125	165	18	4	10	50	25	28	8	40 35	139	166	27	-
MCRN 65-1	44 71	893 863	204	102	439,5 436,5	377,5	1243 1240	125	165	290	88	108	108	138	193 163	65	145	185	18	4	14	62	28	31	8	45 35	160	212,5	25	93
MCRN 65-2	44 71	1093 1063	204	102	639,5 636,5	377,5	1443 1440	125	165	290	88	108	108	138	393 363	65	145	185	18	4	14	62	28	31	8	45 35	160	212,5	25	100
MCRN 80-1	41 82	1004 965	222	124	489 491	416	1391 1393	140	180	320	100	115	115	155	248 208	80	160	200	18	8	14	75	35	38,5	10	50 39	160	228	34	116
MCRN 80-2	41 82	1254 1215	222	124	739 741	416	1641 1643	140	180	320	100	115	115	155	498 458	80	160	200	18	8	14	75	35	38,5	10	50 39	160	228	34	127
MCRN 100-1	53	1289	274	141	626	545	1757	160	200	360	185	145	145	185	300	100	180	220	18	8	18	90	42	46	12	60	185	195	35	175
MCRN 100-2	53	1595	274	141	932	545	2063	160	200	360	185	145	145	185	606	100		220	18	8	18	90	42	46	12	60	185	195	35	201
MCRN 125-1	46 57	1660 1657	318	167	807 815	628	2191 2199	180	200	380	215	170	170	215	396	125 100	210	250	18	8	18	110	55	58,5	16	65	210	222	40	244
MCRN 125-2	46 57	2060 2057	318	167	1207 1215	628	2591 2599	180	200	380	215	170	170	215	796	125 100	210	250	18	8	18	110	55	58,5	16	65	210	222	40	284
MCRN 130-1	46 57	1974 1971	318	167	1121 1129	628	2505 2513	180	200	380	215	170	170	215	711	125 100	210	250	18	8	18	110	55	58,5	16	65	210	222	40	-
MCRN 150-1	66	1894	298	177	1025	650	2435	200	250	400	-	200	200	250	519	150	240	285	22	8	22	110	55	58,5	16	90	262	266	50	366

Код CED: ZME2

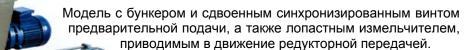



Модель с бункером, оснащенным винтом предварительной подачи. 2 лопастных устройства подачи облегчают процесс перекачки продукции с повышенной вязкостью. Два устройства подачи выталкивают продукцию на винт предварительной подачи, что позволяет избежать образования наслоений продукции на винте и, следовательно, забивания канала подачи особенно вязкой продукцией.

Устройства подачи приводятся в движение независимым электродвигателем с редукторной передачей или двигателем с регулируемой частотой вращения.

Выходной патрубок насоса имеет арматуру в соответствии со стандартом DIN 11851 или фланец по стандарту UNI 2223 PN16. По заказу он может выполняться в модификациях SMS, CLAMP, RJT-BS и IDF.

ТИП	Α	A 1
MC2RN 50-1	422	708
MC2RN 50-2	422	708
МС2ВИ 65-1	686	996
MC2RN 65-2	686	996
MC2RN 80-1	750	1160
MC2RN 80-2	750	1160
MC2RN 100-1	876	1340
MC2RN 100-2	876	1340
MC2RN 125-1	1040	1526
MC2RN 125-2	1040	1526



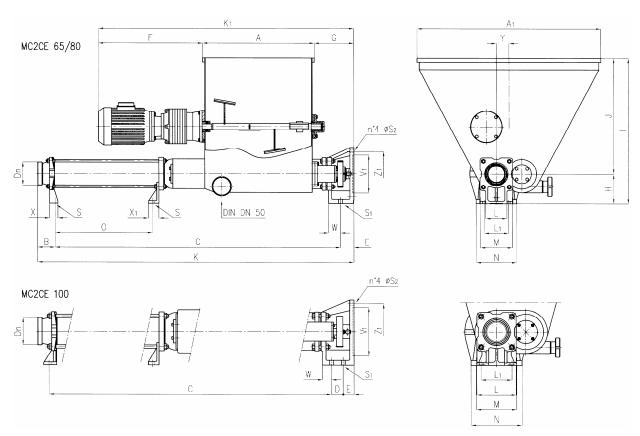
- (1) Первый параметр относится к устройствам подачи с редукторными двигателями, а второй к к устройствам подачи с двигателями с регулируемой частотой вращения. (*) Первый параметр относится к насосу с выходным патрубком, имеющим фланец по стандарту UNI 2223 PN16, второй параметр относится к насосу с выходным патрубком, имеющим разъемную арматуру по стандарту DIN 11851.
- (*) DN Кол-во (*) X Масса (*) B (*) C (*) 0 Модели D G М R u 70 713 113 MC2RN 50-1 MC2RN 50-2 MC2RN 65-1 590 38 1433 63 MC2RN 65-2 72 221 MC2RN 80-1 38,5 MC2RN 80-2 38.5 MC2RN 100-1 MC2RN 100-2 _ MC2RN 125-1 58,5 MC2RN 125-2 58.5

С БУНКЕРОМ, 2-МЯ ВИНТАМИ ПРЕДВАРИТЕЛЬНОЙ ПОДАЧИ И 1 ЛОПАСТНЫМ ИЗМЕЛЬЧИТЕЛЕМ

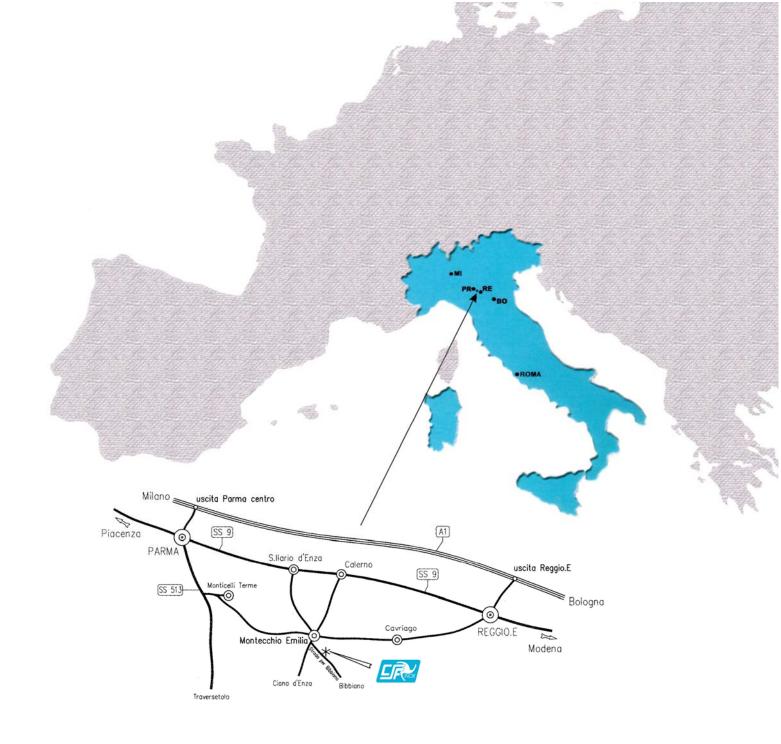
Код CED: ZME2

Два винта предварительной подачи осуществляют забор продукции для последующей подачи на статор насоса.

Лопасти измельчителя


выталкивают продукцию на дно бункера, подавая ее на два винта предварительной подачи и позволяя избежать

застаивания продукции. Данная конструкция идеальна для продукции повышенной вязкости, которая не перемещается по каналу


подачи легко, например, для теста, измельченной продукции или продукции в блоках

Модель может также быть изготовлена в виде насоса с одним подающим винтом, который подает продукцию непосредственно на выход, либо в виде простого устройства подачи в сочетании с лопастным насосом.

Выходной патрубок насоса имеет арматуру в соответствии со стандартом DIN 11851 или фланец по стандарту UNI 2223 PN16. По заказу он может выполняться в модификациях SMS, CLAMP, RJT-BS и IDF.

Модели	Α	A 1	В	С	D	E	К	К1	F	G	H	Ĺ	_	٦	L1	М	Ν	0	DN	S	S1	S2	V1	Z 1	Х	X1	Υ	W
MC2CE 65-1	466	765	71	986		59	1116	1140	490	184	125	490	615	88	108	140	180	162	65	14	19	14	180	215	35	45	50	52
MC2CE 65-2	466	765	71	1186		59	1316	1140	490	184	125	490	615	88	108	140	180	362	65	14	19	14	180	215	35	45	50	52
MC2CE 80-1	526	866	82	1094		63	1239	1202	490	186	140	550	690	100	115	150	190	208	80	14	19	14	180	215	39	50	60	56
MC2CE 80-2	526	866	82	1344		63	1489	1202	490	186	140	550	690	100	115	150	190	458	80	14	19	14	180	215	39	50	60	56
MC2CE 100-1	526	926	52	1290	56	51	1448	1288	490	272	160	600	760	185	145	190	240	301	100	18	19	16	230	265	60	50	69	42
MC2CE 100-2	526	926	52	1596	56	51	1754	1288	490	272	160	600	760	185	145	190	240	607	100	18	19	16	230	265	63	50	69	42

ООО «Рутектор»

109456, Москва, 1-ый Вешняковский пр., д. 1, с. 11 8 800 100-0069 (бесплатные звонки по РФ) (495) 660-0069, (499) 640-0069 info@rutector.ru • www.rutector.ru